Loading...
机构名称:
¥ 1.0

20 世纪 20 年代末,CV Raman 发现当某种材料暴露在光线下时,其分子会非弹性散射一小部分入射光子。这种非弹性散射会产生较低能量(斯托克斯)和较高能量(反斯托克斯)光子 [1]。此后不久,Pringsheim 推测反斯托克斯荧光可用于降低材料的温度 [2]。直到 20 世纪末,Epstein 等人才在掺镱氟化物玻璃中通过实验实现了固体光学冷却 [3]。自这一里程碑式的成就以来,经过系统研究,人们在几类稀土掺杂晶体和玻璃中观察到激光冷却 [4–7]。迄今为止,固态光学制冷达到的最低温度是晶体 Yb:YLiF 4,低至 91 K [8]。在激光冷却研究活动的前 24 年中,对光学冷却玻璃的观察仅限于非硅酸盐 [5]。随着 Yb 掺杂石英光纤和光纤预制棒冷却的成功,这一模式最近发生了转变 [9–19]。高聚合度和强 Si-O 键使玻璃石英在机械和化学耐久性方面优于氟化物系统(例如 ZLBAN 系列)。这些特性使硅酸盐成为光纤激光器应用的更理想材料。在高功率光纤激光器中,需要进行热缓解以保持材料和光束轮廓的完整性 [20–26]。反斯托克斯荧光已被建议作为一种可行的激光器热缓解方法 [27–29]。这种辐射平衡光纤激光器 (RBL) 不会升温,因为它可以有效地散发出运行过程中产生的废热。尽管今年已有基于硅的辐射平衡设备在开创性工作中被报道 [30, 31],但这些

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日PDF文件第1页

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日PDF文件第2页

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日PDF文件第3页

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日PDF文件第4页

arXiv:2109.13872v1 [physics.optics] 2021 年 9 月 28 日PDF文件第5页

相关文件推荐